PHYSICAL REVIEW E

VOLUME 52, NUMBER 6

DECEMBER 1995

Critical edge between frozen extinction and chaotic life

Roberto A. Monetti and Ezequiel V. Albano*
Instituto de Investigaciones Fisicoquimicas Tedricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas,
Universidad Nacional de La Plata, Sucursal 4, Casilla de Correo 16, (1900) La Plata, Argentina
(Received 18 July 1995)

The cellular automata “game of life”” (GL) proposed by J. Conway simulates the dynamic evolution of
a society of living organisms. It has been extensively studied in order to understand the emergence of
complexity and diversity from a set of local rules. More recently, the capability of GL to self-oranize
into a critical state has opened an interesting debate. In this work we adopt a different approach: by in-
troducing stochastic rules in the GL it is found that “life” exhibits a very rich critical behavior. Discon-
tinuous (first-order) irreversible phase transitions (IPT’s) between an extinct phase and a steady state
supporting life are found. A precise location of the critical edge is achieved by means of an epidemic
analysis, which also allows us to determine dynamic critical exponents. Furthermore, by means of a
damage spreading study we conclude that the living phase is chaotic. The edge of the frozen-chaotic
transition coincides with that of the IPT’s life extinction. Close to the edge, fractal spreading of the
damage is observed; however, deep inside the living phase such spreading becomes homogeneous.

PACS number(s): 05.50.+q, 05.40.+j, 64.60.Ht, 05.70.Ln

I. INTRODUCTION

The deterministic cellular automata “game of life”
(GL) invented by Conway [1] has bee extensively studied.
The GL is a two-dimensional lattice system in which the
state of each lattice site depends on deterministic local
rules. The simple algorithm of the GL simulates the dy-
namic evolution of a society of living individuals. Pro-
cesses such as growth, death, survival, self-propagation,
and competition are considered. Early studies on the GL
have focused on understanding the emergence of com-
plexity and diversity from a few simple local rules [1-5].
More recently, Bak, Chen, and Creutz [6] have proposed
that the GL develops into a self-organized critical (SOC)
state. These SOC evidences have been questioned by Ben-
nett and Bourzutschky [7] and subsequently an interest-
ing debate has been established [8-10].

In this work we adopt a different approach by intro-
ducing stochastic rules in the GL. So the proposed sto-
chastic game of life (SGL), in contrast to Conway’s deter-
ministic GL, may also help us to understand the dynamic
of evolution of a society in the presence of random noise.
The SGL is defined in two dimensions where each lattice
site may be in two states, representing the presence or ab-
sence of a live individual. The fate of each state depends
on the eight nearest neighbors. So the rules for the evolu-
tion of the system are as follows: (1) A live individual
that has four or more live neighbors will die in the next
step (decease by overcrowding). Also, a live site will die in
the next step if it has one or zero live neighbors (decease
by isolation). However, if the live individual has two or
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three live neighbors it will remain alive with probability
D, (survival probability). (2) At a dead site, a new indivi-
dual will be born at the next time step if it has three live
neighbors, however, if the site has two live neighbors an
individual will be born only with probability p, (birth
probability).

All births and deaths take place simultaneously. The
stochastic components of the model have been selected
such as for p, =0 and p,=1 the deterministic Conway
GL is recovered.

Starting with a random distribution of live sites, the
SGL evolves according to rules (1) and (2) until it reaches
a stationary state. The nature of this state solely depends
on the stochastic parameters of the model: for some set
of values (p,,p,) the system evolves toward extinction
and the final state is an empty lattice, while for the com-
plementary set of parameters the density of live individu-
als remains finite. A critical edge is the border between
the live and the extinct phases. So the aim of this work is
to study the critical behavior of the SGL by means of
Monte Carlo numerical simulations. The study is mainly
based upon both epidemic and damage spreading
analysis. Although the SGL is not related in any obvious
way to specific physical or biological systems, there are
various considerations that have led us to examine its
properties. From the physical point of view we are in-
terested in the nonequilibrium dynamics of the SGL in
connection with other far from equilibrium irreversible
processes such as, for example, irreversible phase transi-
tions (IPT’s) in catalyzed reaction systems [11,12]. Also,
very recently the onset of chaotic behavior within the ac-
tive phase of the latter processes has been established
[13-15], so this possibility is also analyzed within the
context of the SGL. From the biological point of view the
noise introduced in the present model improves the deter-
ministic GL since biological systems, especially evolu-
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tionary ones, have a strong factor of indeterminism. This
paper is organized as follows: Section II gives brief de-
tails of the simulation; in Sec. III the phase diagram is
discussed; the theoretical background and results of the
epidemic analysis are treated in Sec. IV and Sec. V is de-
voted to the damage spreading analysis. Finally, our con-
clusions are stated in Sec. VI.

II. BRIEF DETAILS ON THE SIMULATION

In this paper we study the statistics of relevant aspects
of the dynamic critical behavior of the SGL. The system
is a two-dimensional square lattice of size L
(100 L <£300) with periodic boundary conditions. The
fate of each site depends on the eight neighbors, i.e., the
eight sites surrounding the site under consideration, or in
other words, the first and second crystallographic nearest
neighbors in a two-dimensional square lattice. We started
at t =0 with a random distribution of living sites with
probability p,. As in standard cellular automata pro-
cedures, at each time step all sites are updated simultane-
ously according to the rules stated in the previous sec-
tion. It should be noted that the stationary state of the
GL model depends on the initial conditions [2]. The
asymptotic density of living individuals p takes the value
p~0.03 for initial densities in the range 0.15=<p,<0.75
[5]. A remarkable feature of SGL is that the stationary
state is less sensitive to the initial conditions than in the
GL, so all results presented here correspond to p,=0.5.

III. THE PHASE DIAGRAM

Starting with a random distribution of live sites with
probability p,=0.50, the SGL is allowed to evolve ac-
cording to rules (1) and (2) until it reaches a stationary
state. Figure 1 shows, for the steady state, the depen-
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FIG. 1. Plot of the density of live individual p vs p, obtained
keeping p, =0.50 constant.
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FIG. 2. Plot of the critical points p§ vs p, for the extinction-
life edge.

dence of the density of live sites (p) on p, keeping
P,=0.50 constant. For small values of p;, all live sites
and their ascendents have died. However, increasing p,
the onset of life is abruptly observed at a certain critical
point of coordinates (pg,ps). The abrupt variation of p at
criticality indicates the existence of a first-order IPT.
Scanning p,, a set of critical points is obtained, which
defines a critical curve pg(p;), as is shown in Fig. 2. So a
critical edge limiting two phases characterized by extinc-
tion and life is found. Points in Fig. 2 correspond to crit-
ical values determined quite precisely and studied in de-
tail in the forthcoming sections. The critical line has been
drawn evaluating critical points from a set of plots of p vs
Dy as shown in Fig. 1 and therefore is less accurate. The
occurrence of first-order IPT’s is a common feature of
other irreversible far from equilibrium models describing
heterogeneously catalyzed reactions such as the
monomer-dimer model [11], the monomer-monomer
model [11], the dimer-dimer model [16], the dimer-
dimer-monomer model [17], etc. So the understanding of
these processes has attracted considerable theoretical
effort [18,19].

IV. EPIDEMIC ANALYSIS

A. Theoretical background

It should be stressed that for L finite the steady state of
each particular system is metastable because, due to fluc-
tuations of the stochastic processes, there is always a
finite probability of life to become extinct. This probabil-
ity increases when approaching the critical edge, and
consequently it becomes difficult to precisely evaluate
critical points using a set of plots as in Fig. 1. This
shortcoming can be avoided performing an epidemic
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analysis [19]. Furthermore, this analysis allows us to
determine reliable critical exponents related to the dy-
namic critical behavior of the system.

The epidemic analysis is performed as follows: one
starts, at £ =0, with a small colony of living sites in an
otherwise dead landscape, i.e., a configuration close to
the extinct state. Then, the evolution of the colony ac-
cording to the rules of the SGL is monitored and the fol-
lowing quantities are computed: (i) The average number
of live individuals N (¢) and (ii) the survival probability of
the colony P(t) at time ¢. Finite-size effects are absent
because the system is taken large enough to avoid the
presence of live individuals at the boundaries. Averages
are taken over 10* samples and runs are performed up to
t =1100.

At criticality, the following scaling behavior holds
[19,20]:

P(t)xt® (1)
and
N(t)o<t? (2)

where 8 and 7 are dynamic exponents. At criticality, one
expects that log-log plots of P(¢) and N(z) vs ¢t would
give straight lines, while upward and downward devia-
tions will occur even slightly off criticality. This behavior
would allow a precise determination of the critical points
and the critical exponents 8 and 7.

B. Results and discussion

Figure 3 shows a log-log plot of P(t) vs t taken for
different values of p, close t criticality and keeping
ps=const. The asymptotic straight line obtained for
ps=0.10 and p{=0.470 is the signature of critical
behavior, while slight upward and downward deviations
for other p, values indicate supercritical and subcritical
behavior, respectively. The same conclusion follows after
analyzing log-log plots of N (z) vs ¢; see, e.g., Fig. 4. In all
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FIG. 3. Log-log plots of P(t) vs t obtained keeping p, =0.10
constant and taking p, =0.475 (upper curve), p, =0.47 (medium
curve), and p, =0.465 (lower curve).
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FIG. 4. Log-log plots of N (¢) vs t obtained keeping p, =0.10
constant and taking p, =0.475 (upper curve), p, =0.47 (medium
curve), and p, =0.465 (lower curve).

cases the epidemic is started with one glider (i.e., a colony
of five live individuals [1]) placed at the center of the sam-
ple. Of course, the critical exponents must be indepen-
dent of the starting colony, as is confirmed in Fig. 5,
which shows that the asymptotic slope of log-log plots of
N (t) vs t is the same when gliders, blinkers, and ponds [1]
are used to initialize the epidemic.

Figures 6(a) and 6(b) show plots of N(¢) and P(¢) vs ¢
obtained at different critical points. The corresponding
critical exponents § and 7, as listed in Table I, are ob-
tained by means of least-square fits of the asymptotic
behavior of the corresponding curves. It is observed that
when the parameters of the model approach the standard
GL limit (p;— 1 and p, —0) the asymptotic slopes of the
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FIG. 5. Log-log plots of N(¢) vs ¢ obtained at the critical
point pS=0.25,p5=0.425, and using different initial colonies:
ponds (upper curve), blinkers (medium curve), and gliders
(lower curve).
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TABLE 1. Critical points and critical exponents of the SGL.
The error bar in parentheses merely reflects the statistical error
in the last digit.

Ds Db 1 8
0.0 0.493(2) —0.264(3) 1.024(7)
0.1 0.470(2) —0.392(3) 1.180(5)
0.25 0.425(2) —0.507(2) 1.306(4)
0.5 0.329(2) —0.268(2) 1.000(5)
0.7 0.227(2) —0.070(4) 0.790(5)
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FIG. 6. (a) Log-log plots of N(t) vs t obtained at different
critical points: p=0.50, pf=0.329 (O); pS=0.0, pf=0.4935
(®); p7=0.250, p;=0.425 (w); and p;=0.10, p5=0.47 (V). (b)
Log-log plots of P(t) vs ¢ obtained at different critical points:
p<=0.70, pf=0.227 (W); pf=0.00, pf=0.4935 (@); ps=0.50,
p5=0.329 (V); pf=0.250, pf=0.425 (M); and pS=0.10,
ps=0.470 (O).
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curves shown in Figs. 6(a) and 6(b) approach zero. This
behavior is expected since an isolated colony in an other-
wise dead sea is stable: it neither reproduces nor dies.

As follows from Table I, the critical exponents ob-
tained at various critical points of the extinction-life edge
depend on the critical points. This behavior is due to the
fact that the IPT is discontinuous (first order), and there-
fore long-range correlations capable of absorbing the lo-
cal details of the model are absent. This is in contrast
with second-order IPT’s where long-range correlations
dominate the critical behavior of the system and conse-
quently universality is observed [20-23]. Furthermore,
for first-order (second-order) IPT’s the exponent 7 is neg-
ative (positive) [19,24].

V. DAMAGE SPREADING ANALYSIS

A. Theoretical background

The damage spreading problem consists first in taking
a steady-state configuration of the SGL o4 and creating
at ¢ =0 an initial small perturbation or damage D (0) in
that configuration (which gives a second configuration
oB). Then, one investigates the time evolution of both
configurations, using the same dynamic. Such
configurations will describe trajectories in the phase
space. We want to investigate whether the dynamic of the
process is chaotic. The case in which two initially close
trajectories quickly become different is generically called
chaotic. In order that the concept of closeness of trajec-
tories be meaningful one must have a definition of dis-
tance in phase space. A useful metric is given by the
Hamming distance or damage, defined by [25]

M
D()=(1/M) 3 lo()—af(D)], (3)

i=1

where M is the number of sites of the system. So D (¢) just
measures the fraction of sites for which both
configurations are different. Starting with a small D (0)
value, D (¢) will go asymptotically to zero in the so-called
frozen phase, whereas it will tend to a finite value
different from zero in the so-called chaotic phase.

While the study of damage spreading in a system ex-
hibiting reversible phase transitions has received much
attention (for a review see [25]), only few similar studies
in systems undergoing IPT’s have been performed
[14,15]. These studies reveal the existence of a new and
rich dynamic critical behavior.

B. Results and discussion

As in the study of the phase diagram (Sec. III), the
square lattice is initialized with a random distribution of
live sites with probability p =0.50. Then the system is al-
lowed to evolve, according to rules of the SGL, until it
reaches a steady state in order to obtain a stationary
configuration {o“}. If the central site of {o*}, with
coordinates (L /2,L /2), has two or three live neighbors a
damaged configuration {o®} is made. Within the extinct
phase all starting configurations evolve toward empty lat-
tices, so one always has D (o )=0 and the extinct phase
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FIG. 7. Log-log plots of D(t) vs t obtained keeping p;=0.0
constant and taking p,=1.0 (@), p,=0.6 (V), p,=0.496 (V),
p»=0.5(0), and p, =0.494 (&).

is obviously “frozen.” Figure 7 shows log-log plots of
D(t) vs t obtained for different values of p, keeping
ps =0.5 constant. The same behavior is observed for all
sets of points within the living phase; i.e., the damage
grows almost linearly (in a log-log scale) until it reaches a
plateau. Also, the saturation value of the damage de-
creases when approaching the critical edge. So, we con-
clude that the living phase is chaotic, and therefore the
critical edge of the IPT between life and extinction is the
same as that of the frozen-chaotic transition.

Figure 8(a) shows log-log plots of D (¢) vs t obtained us-
ing lattices of different size L but keeping both p,=0.5
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FIG. 8. (a) Log-log plots of D(?) vs ¢ obtained using lattices
of different size and keeping both p,=0.5 and p, =0.70 con-
stant. L =100 (@), L =150 (V), L =200 (w), and L =300 (0O).
(b) Log-log plots of D(t) vs t /7 for the data shown in (a).

TABLE II. Values of the exponents a,8,d,, and the saturation time (/) corresponding to different
values of the parameters p; and p,. The error bars in parentheses merely reflects the statistical error in

the last digit.
Ds Dr a B df T

0.0 0.494 1.456(3) 1.631(3) 1.785(5) 109.0£2.0
0.0 0.496 1.672(3) 1.765(3) 1.895(5) 95.0+2.0
0.0 0.50 1.839(3) 1.841(3) 1.998(5) 82.0+2.0
0.0 0.6 2.000(3) 2.000(3) 2.000(5) 70.0+2.0
0.0 0.8 2.000(3) 2.000(3) 2.000(5) 73.0+2.0
0.0 1.0 2.000(3) 2.000(3) 2.000(5) 78.0x2.0
0.25 0.6 2.000(3) 2.000(3) 2.000(5) 69.01+2.0
0.25 0.8 2.000(3) 2.000(3) 2.000(5) 72.0+2.0
0.25 0.9 2.000(3) 2.000(3) 2.000(5) 73.0+2.0
0.25 1.0 2.000(3) 2.000(3) 2.000(5) 75.0£2.0
0.5 0.35 1.977(3) 1.985(3) 1.992(5) 70.0+2.0
0.5 0.7 2.000(3) 2.000(5) 2.000(5) 68.01+2.0
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and p, =0.70 constant. It is found that the initial slopes
and saturation values of all curves are independent of L.
However, the time required for the system to reach the
plateau 7(L) depends on L. It is because the damage
propagation velocity is constant, i.e., the larger the lattice
size L the longer the time 7 required to reach the edges.
This behavior suggests that the following scaling ansatz
should hold:

a

x%*, x=<1,

D (x)e x>1,

const, @)
where x =t /7(L) and «a is an exponent. In fact, Fig. 8(b)
shows that excellent data collapsing is obtained using Eq.
(4). The obtained values of the exponent a are listed in
Table II. It is found that most values are close to a=2
but smaller values of a are obtained when approaching
the critical edge.

The average square distance R %(¢) over which the ini-
tial damage has spread, from the center of the sample to-
wards the boundaries, has also been evaluated. Figure 9
shows plots of R%(t) vs ¢ obtained for different values of
pp and keeping p, =0.0 constant. It is found that R*(¢)
and D (t) exhibit a similar behavior, so the following scal-
ing ansatz should also hold:

xB, x<1,

2
R%(x) = const, x>1,

(5)

where 3 is an exponent (for the result see Table II).

The number of damaged sites is related to the spatial
extent of the damage through the fractal dimension (d)
of the damaged cloud, so

D(=RY(1) . (©6)
So, using Eqgs. (4) and (5) it follows that
20=pd; . (7

The values of d, calculated from Eq. (7) are listed in

10° | fw .

10% .

10° 10* 107 103
t

FIG. 9. Log-log plots of R%(t) vs t obtained keeping p, =0.0
constant and taking p,=0.5 (@), p, =0.496 (V), and p, =0.494
(w).
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Table II. It is observed that in most cases d,=2. The
fractal dimension of the cloud d; is less than 2 only for
values of the parameters very close to the critical edge,
where the damaged region is a fractal object. These
figures suggest that deep inside the living phase the
spreading of the damage is compact and homogeneous.
However, when approaching the critical edge and due to
the sudden drop in the density of living individuals (see
Fig. 1), only fractal spreading can be observed. This
behavior becomes evident from the snapshot
configurations shown in Fig. 10.

VI. CONCLUSIONS

A Stochastic game of life model is formulated and
studied. The stochastic components are introduced to
Conway’s game of life through two parameters, namely,
the surviving and birthing probabilities, p; and p,, re-
spectively. The system presents two phases, an extinct
phase where the density of living individuals vanishes and
a living phase (0<p<1), depending on the parameter
values. The abrupt variation of p at criticality indicates

100

75 -

50 -

25

100

75

50 +

25 —

FIG. 10. Typical snapshot configurations showing the dam-
aged cloud, initialized at the center of the sample, just when it
reaches one of the edges. Results obtained for p;=0.5 and (a)
Py =0.70 (well inside the living phase), and (b) p, =0.331 (close
to the critical edge).
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the existence of a first-order IPT. The critical points and
the same dynamic critical exponents are calculated by
means of the epidemic analysis. A damage spreading
analysis leads to the conclusion that the living phase is
chaotic and the critical edge of the IPT between life and
extinction is the same as that of the frozen chaotic transi-
tion. Well inside the living phase the cloud of damaged
cells is homogeneous, so the spreading of the damage is
compact. However, close to the critical edge fractal
spreading is found. Of course, the stochastic game of life
is not a realistic model for any particular living system.
However, it shows a very rich irreversible critical
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behavior, also present in actual systems of biophysical in-
terest.
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